抽签时先抽和后抽的中间几率是,抽签时签都撒出来
先抽和后抽的概率一样吗?请分情况讨论
这是一个教科书范例级的古典概率论问题了。答案是:取决于先抽的人抽中签之后是不是马上打开看。如果先抽的人抽签之后并不马上打开看,而是等所有人都抽完之后再打开,那么先抽和后抽的人抽中某个签的概率是一样的。反之,如果先抽的人抽签之后马上打开看,那么后抽的人抽中某个签的概率就变了,因为这个时候,后抽的人抽中某签的概率成了在给定“先抽的人抽过签”这个条件之后的“条件概率”。当然,不需要计算,凭直观也能知道,如果先抽的人没有抽中某签,那后抽的人抽中该签的条件概率就提高了;如果先抽的人已经抽中了该签,后抽的人抽中该签的条件概率就是0了。
希望采纳
抽签时先抽和后抽中签的几率是多少?
都是相等的,对于抽签的人来说,是公平的。
不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
基本规则
1、各地方民间抽签的签诗大部分都是28个签组
成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,因为民间签的数字是以28星宿象来代表的。
60签的数字是以60甲子来表示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。有的人认为100签的数字是根据12月份,150%节气和72候的总和而成的。
2、按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的目的和内容,然后从签筒中任意抽一根签出来(有的地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有的地方称为茭)扔到地上,有一正面一反面的才算是这一签,否则就得重新再抽。
抽签时,先抽与后抽得中签机会是:
概率相同,但是掌握在谁手里不一定。极端的例子,两个人,抽两个签。只要第一个人抽完了,后一个人也就确定了不用抽了,两个人的概率都是1/2。只不过这个概率都是第一个人产生的,第二个人中不中取决于第一个人的手是不是臭。
抽签先抽和后抽概率一样么?为什么
这是一个教科书范例级的古典概率论问题了。答案是:取决于先抽的人抽中签之后是不是马上打开看。如果先抽的人抽签之后并不马上打开看,而是等所有人都抽完之后再打开,那么先抽和后抽的人抽中某个签的概率是一样的。反之,如果先抽的人抽签之后马上打开看,那么后抽的人抽中某个签的概率就变了,因为这个时候,后抽的人抽中某签的概率成了在给定“先抽的人抽过签”这个条件之后的“条件概率”。当然,不需要计算,凭直观也能知道,如果先抽的人没有抽中某签,那后抽的人抽中该签的条件概率就提高了;如果先抽的人已经抽中了该签,后抽的人抽中该签的条件概率就是0了。
希望采纳
抽签时先抽和后抽中签的几率是相等的还是不等的?
相等。
抽签不管谁先抽都是相等公平的。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。比如在公司开会或者团建的时候,领导经常会出其不意提出一些烧脑的问题,而面对这些问题,我们首先应该弄清的是先回答还是后回答。
计算验证:
从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。
而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
按顺序进行抽奖,先抽和后抽的中奖概率一样吗?
均等,不管谁先抽都是公平的。
用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。
而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。抽签选择是一种较公平的选择方法,在不公布结果的情况下,抽签先后顺序是不会影响中奖概率的。