逻辑思维能力测试20,双子座的历史
逻辑思维能力测试
是这个题目吧:
小明和小强都是张老师的学生,张老师的生日是M月N日,
2人都知道张老师的生日是下列10组中的一天,
张老师把M值告诉了小明,把N值告诉了小强,
张老师问他们知道他的生日是那一天吗?
3月4日 3月5日 3月8日
6月4日 6月7日
9月1日 9月5日
12月1日 12月2日 12月8日
小明说:如果我不知道的话,小强肯定也不知道
小强说:本来我也不知道,但是现在我知道了
小明说:哦,那我也知道了
请根据以上对话推断出张老师的生日是哪一天
答案应该是9月1日。
1)首先分析这10组日期,经观察不难发现,只有6月7日和12月2日这两组日期的
日数是唯一的。由此可知,如果小强得知的N是7或者2,那么他必定知道了老师的
生日。
2)再分析“小明说:如果我不知道的话,小强肯定也不知道”,而该10组日期的
月数分别为3,6,9,12,而且都相应月的日期都有两组以上,所以小明得知M后
是不可能知道老师生日的。
3)进一步分析“小明说:如果我不知道的话,小强肯定也不知道”,结合第2步
结论,可知小强得知N后也绝不可能知道。
4)结合第3和第1步,可以推断:所有6月和12月的日期都不是老师的生日,因为
如果小明得知的M是6,而若小强的N==7,则小强就知道了老师的生日。(由第
1步已经推出),同理,如果小明的M==12,若小强的N==2,则小强同样可以知道老师的生日。即:M不等于6和9。现在只剩下“3月4日 3月5日 3月8日 9月1日
9月5日”五组日期。而小强知道了,所以N不等于5(有3月5日和9月5日),此时,
小强的N∈(1,4,8)注:此时N虽然有三种可能,但对于小强只要知道其中的
一种,就得出结论。所以有“小强说:本来我也不知道,但是现在我知道了”,
对于我们则还需要继续推理
至此,剩下的可能是“3月4日 3月8日 9月1日”
5)分析“小明说:哦,那我也知道了”,说明M==9,N==1,(N==5已经被排除,3月份的有两组)
逻辑推理测试题
选E啊 小林平时虽然注重逻辑知识的学习和逻辑思维的训练,但也推不出他的思维是有条理和逻辑性的啊。前面的论据也讲了“可以有效提高”,小明注重逻辑训练和他的思维有条理是不等价的
谁有逻辑思维测试题??越多越好
1)两地旅行
我租了一辆旅游小车,离开阿姆斯特丹,向花城亚里士梅尔出发了。
在阿姆斯特丹和亚里士梅尔两城正中间有一K镇,镇上有两个 朋友A和B也乘上了我们的车。三人愉快地度过一天的旅行后,准备返回,可是A决定在K镇下车,B随我回阿姆斯特丹。现在仍按荷兰式的均摊方式,准备各付自己的旅程费。从阿姆斯特升到亚里士梅尔规定往返要付24盾 (约合20元人民币)。K域位于两城的正中间,那么三个人应各付多少钱?
答案:我付10.7盾,A付5.3盾,B付8盾
我的思路:设K镇与亚里士梅尔或阿姆斯特丹的路程为X,则A走了2段路程,B走了3段路程,我走了4段路程,按比例分配旅费即可。
2)耕地能手和播种能手
新德里郊区有个庄园主,雇了两个小工为他种小麦。其中A是 一个耕地能手,但
不擅长播种;而B耕地很不熟练,但却是播种的能手。庄园主决定种10公亩地的小麦,让他俩各包一半,于是A从东头开始耕地,B从西头开始耕。A耕地一亩用20分钟,B却用40分钟,可是B播种的速度却比A倍。 耕播结束后,庄园主根据他们的工作量给了他俩100卢比工钱。
他俩怎样分才合理呢?
答案:每人一半,各拿50卢比。因为不论每个人干活速度如何,庄园主早就决定他们两人 "各包一半"。因此他们二人的耕地、播种面积 都是一样的,工钱当然也应各拿一半。
我的思路:
工钱是按面积算的,只要抓住“各包一半”即可。
3)叫喊几分钟
沙漠中的骆驼商队,通常把体弱的骆驼夹在中间,强壮的走在两头,驼队排成一行
按顺序前迸。商人为了区别它们,就在每一头骆驼身上盖上火印,枝而引顶序,在给骆驼打火印时,它们都要痛得叫喊5分钟。
问:若某个商队共有10头骆驼,盖火印时的叫喊声最少要听几分钟,假如叫声是不重
叠在一起的。
答案:45分钟。开始你也许会想是5x10=50。可是因为火印盖到第九只骆驼,剩下的一只,他们就不盖了,因为不盖也能与其他的区别。
启发:做人要灵活。
4)应该找多少零钱
进了一家礼品商店,看到一架照相机,这种照相机在日本连皮套 共值3万日元,可这家商店要310美元 (要美元,不要泰国铢),折合日元约为4万多日元。照相机的价钱比皮套贵300美元,剩下的就是皮套的价钱。请问:现买一副皮套拿出100美元,应该找多少零钱?
答案:不仔细考虑,就会中计受骗。假如皮套是10美元,那么照相机比它贵300美元,即310美元。加在一起就成为320美元。正确答案 应该是皮套5美元,应找零钱95美元。这样,照相机为305美元,加皮套共310美元,才符合计算。
我的思路:设皮套为X,照相机为300+X,即2X+300=310,X=5。只是用到初中的数学知识。
5)大小灯球
"鸡兔同笼"的算题和算法,在中国古代的民间广为流传,甚至被誉为"了不起的妙算"。以至清代小说家李汝珍,把它写到自己的 小说《镜花缘》中。
《镜花缘》写了一个才女米兰芬计算灯球的故事——
有一次米兰芬到了一个阔人家里,主人请她观赏楼下大厅里五缤纷、高低错落、宛若群星的大小灯球。
主人告诉她:"楼下的灯分两种:一种是灯下一个大球,下缀两个小球;另一种是灯下一个大球,下缀四个小球。楼下大灯球共360 个,小灯球1200个。"
主人请她算一算两种灯各有多少。
答案:一个大灯球下缀两个小灯球当是鸡,一个大灯球下缀四个小灯球当是兔。 (360x4-1200)/(4-2)=240/2=120 (一大二小灯的盏数) 360-120=240(一大四小灯的盏数)
我的思路:设每一种灯为X,另一种灯为Y,则有
X+Y=360;2X+4Y=1200;解得:X=120,Y=240。
6)粗木匠的难题
木匠拿来一根雕刻着花纹的小木柱说:
"有一次,一位住在伦敦的学者,拿给我一根3英尺长,宽和厚均为1英尺的木料,希望我将它砍削、雕刻成木柱,如你们现在看到 的样子。学者答应补偿我在做活时砍去的木材。我先将这块方木称一称,它恰好重30磅,而要做成的这根柱子只重20磅。因此,我从方木上砍掉了1立方英尺的木材,即原来的三分之一。但学者拒不承认,他说,不能按重量来计算砍去的体积,因为据说方木的中间部分要重些,也可能相反。请问,我在这种情况下怎样向好挑剔的学者证明,究竟砍掉了多少木材?"
乍一看,这个问题很困难,但答案却如此简单,以致粗木匠的办法人人皆知。这种小聪明在日常生活中也是很有用的。
答案:木匠说,他做一个箱子,内部的尺寸精确得与最初的方木相同, 即是3x1x1。然后,他把己雕刻好的木柱放入箱内,而在空档处塞满干沙土。然后,他细心地振动箱子,使得箱内沙土填实并与箱口齐平。然后,木匠轻轻取出木柱,不带出任何沙粒,再把箱内的沙土捣 平,量出其深度便能证明,木柱能占的空间恰为2立方英尺。这就是 说,木匠砍削掉一立方英尺的木材。
启发:做这题时让我想起了〈〈称象〉〉的故事。
7)鸟与木柱
有一群鸟,还有一堆木柱, 如果一只鸟落在一个柱的话, 剩下一个鸟没地方落
如果一个木柱两只鸟的话, 那就多了一个木柱, 问有多少只鸟, 多少个木柱?
答案:给个干扰答案: 设鸟=X,木柱=Y ;X=Y+1 ,Y=X/2+1 ;X=?Y=? 四只鸟,三只木桩。
但不全对,如果是谦让的鸟,它们就飞走了,另找他地。 如果是贪婪的鸟,那么它们为争抢多出来的木桩 就会大打出手。
所以。答案是四只木桩,零只鸟。
启发:要留意生活。
1.IBM社会招聘笔试题 1.一个粗细均匀的长直管子,两端开口,里面有4个白球和4个黑球,球的直径、两端开口的直径等于管子的内径,现在白球和黑球的排列是wwwwbbbb,要求不取出任何一个球,使得排列变为bbwwwwbb。
2.一只蜗牛从井底爬到井口,每天白天蜗牛要睡觉,晚上才出来活动,一个晚上蜗牛可以向上爬3尺,但是白天睡觉的时候会往下滑2尺,井深10尺,问蜗牛几天可以爬出来?
3.在一个平面上画1999条直线最多能将这一平面划分成多少个部分? 4.在太平洋的一个小岛上生活着土人,他们不愿意被外人打扰,一天,一个探险家到了岛上,被土人抓住,土人的祭司告诉他,你临死前还可以有一个机会留下一句话,如果这句话是真的,你将被烧死,是假的,你将被五马分尸,可怜的探险家如何才能活下来?
5.怎样种四棵树使得任意两棵树的距离相等。
6.27个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?
7.有一座山,山上有座庙,只有一条路可以从山上的庙到山脚,每周一早上8点,有一个聪明的小和尚去山下化缘,周二早上8点从山脚回山上的庙里,小和尚的上下山的速度是任意的,在每个往返中,他总是能在周一和周二的同一钟点到达山路上的同一点。例如,有一次他发现星期一的8点30和星期二的8点30他都到了山路靠山脚的3/4的地方,问这是为什么?
8、美国有多少辆汽车?
9、将汽车钥匙插入车门,向哪个方向旋转就可以打开车锁?
10你让某些人为你工作了七天,你要用一根金条作为报酬。这根金条要被分成七块。你必须在每天的活干完后交给他们一块。如果你只能将这根金条切割两次,你怎样给这些工人分?
11一列火车以每小时15英里的速度离开洛杉矶,朝纽约进发。另外一列火车以每小时20英里的速度离开纽约,朝洛杉矶进发。如果一只每小时飞行25英里的鸟同时离开洛杉矶,在两列火车之间往返飞行,请问当两列火车相遇时,鸟飞了多远?
12假设一张圆盘像唱机上的唱盘那样转动。这张盘一半是黑色,一半是白色。假设你有数量不限的一些颜色传感器。要想确定圆盘转动的方向,你需要在它周围摆多少个颜色传感器?它们应该被摆放在什么位置?
13假设时钟到了12点。注意时针和分针重叠在一起。在一天之中,时针和分针共重叠多少次?你知道它们重叠时的具体时间吗?
14你有两个罐子,分别装着50个红色的玻璃球和50个蓝色的玻璃球。随意拿起一个罐子,然后从里面拿出一个玻璃球。怎样最大程度地增加让自己拿到红球的机会?利用这种方法,拿到红球的几率有多大?
15中间只隔一个数字的两个奇数被称为奇数对,比如17和19。证明奇数对之间的数字总能被6整除(假设这两个奇数都大于6)。现在证明没有由三个奇数组成的奇数对。
16一个屋子有一个门(门是关闭的)和3盏电灯。屋外有3个开关,分别与这3盏灯相连。你可以随意操纵这些开关,可一旦你将门打开,就不能变换开关了。确定每个开关具体管哪盏灯。
17假设你有8个球,其中一个略微重一些,但是找出这个球的惟一方法是将两个球放在天平上对比。最少要称多少次才能找出这个较重的球?
18假设你站在镜子前,抬起左手,抬起右手,看看镜中的自己。当你抬起左手时,镜中的自己抬起的似乎是右手。可是当你仰头时,镜中的自己也在仰头,而不是低头。为什么镜子中的影像似乎颠倒了左右,却没有颠倒上下?
答案:
1,管子口对口弯曲,形成一个圆环。
2、8天(第7天已爬7尺)
3,0条直线分平面为1份
1条(1+1)份,2条(2+1+1)份,3条(3+2+1+1份
1999条(1999+1998+1997+-------+2+1+1)份为1999001份
4,我将被五马分尸,若为真则会烧死则假,若为假则五马分尸则为真
5,种在一个坑或按立体的正四面体的顶点排列
6,18瓶,18---6---2再借一瓶喝完后用三个空瓶换得一瓶再还回去
7,这好比两个小和尚在8点同时从山顶山脚出发,必有相遇的时刻此时他总是能在周一和周二的同一钟点到达山路上的同一点.
8,不知道
9,顺时针
10,按1,2,4分开第1天给1,第二天拿走1给2
11,设两地距离akm则飞了a/35*25=(5/7)a
12,2个为a,b,均放在左侧a在左上,b在左下,若a先于b变化,则顺时针,b先于a变化,则逆时针
13,22次,因为时针速度0.5度/min,分针速度6度/min
两次相遇的间隔距离为360度,需360/(6-0.5)=65又5/11min
一天24小时得24*60/65又5/11=22
14将装有红球罐子的49个红球拿到蓝球罐子中,一个留下
那到红求的概率为1/2+(1/2)*49/99=74/99=74.74747%
15是不是奇数对中各数之和被六整除
证:设奇数对中两个奇数为2x-1,2x+1
则之间的数为2x
和为6x,被6整除
证明没有由三个奇数组成的奇数对
证:假设有三个奇数组成的奇数对,为a,b,c
且a则a与b,b与c,c与a均为奇数对
所以a+1=b,a+1=c
所以b=c矛盾
所以不存在
16,设开关a,b,c
打开a一段时间,关上,开b
开门
亮着的灯与b相连
未亮但有热度的与a相连
剩下一个与c相连
17,两次
将小球编号1,2,3,4,5,6,7,8
1,2,3放在天平左端
4,5,6放在天平右端
7,8不放
若左端下沉则将1,2,3中
1放在左端,2在右端,3不放
哪端下沉即为重球,都不下沉则3为重球
若右端下沉方法类似
若都不下沉
则把7放在左端,8右端
哪端下沉即为重球
速求!逻辑推理题20道
某公司的CEO面临着一个当代很普通的问题:裁员。
CEO对助理讲:“我们必须裁剪掉一半的员工,但是我很担心我裁掉的人会是对公司很有用的人才。你知道,这样的事情现在太多了。”
助理说:“没有问题。你不必亲自裁剪任何人。让他们自己解雇自己,那样他们就不会责怪你了。就让我来做吧。”
于是这名助理就逐个把雇员叫到办公室。他说:
“这有两个信封。一个里面装的是解雇通知书,另一个是续约合同书。”
他眨眨眼说:“你要做的是选出正确一个。”
“那我怎么知道哪个是哪个啊?”
“很简单,读一读信封上的字就知道了”
信封A:选我吧!我的里面装着续约合同书
信封B:我里面或者是另外一个信封的里面装着解雇通知书
助理说:“只有一个是正确的。”
假如你是雇员,你会选哪个?
第二天,CEO还是不满意。
“你找的10名员工做你的测试,他们全都选对了。我想你没有能够很好完成这件事。”
助理决定把测试做得更完善。他向雇员说,他有两个信封,两个都可能装着解雇通知书;或者都装有续约合同书;或者一个装有解雇通知书,一个装有续约合同书。他一手拿一个信封。如果左手拿着续约合同书,那上面的提示就是正确的;但如果里面是解雇通知书,那上面的提示就是错误的。右手拿着续约合同书,那上面的提示就是错误的;但如果里面是解雇通知书,那上面的提示就是正确的。
左手信封提示:你选择哪个信封都一样
右手信封提示:另外一个信封装有续约合同书
假如你是雇员,你会选哪个?为什么?
第三天CEO更加生气。
这次你选了20个员工做你的测试,结果都通过了。这对于我做出裁员决定毫无帮助。你必须把测试设计的更难些。”
助理想了一下:“剩下的员工都很聪明,即使他们中有一两个答错了,对于裁剪一半员工也没什么大作用。然而,有一个方法我还没有试过。”
“不管怎么样,赶快试。如果在明天股东大会结束前还没有结果,”CEO带点威胁的眼神说:“那我知道至少有一个人要被解雇。”
第二天会议上,助理起身向大股东介绍情况,并结尾说:
“目前我们的支出仍然是应有支出的两倍。可问题是,所有的员工都非常聪明,都没挑选解雇通知书。然而,各位股东可以看到,”助理指着原图分析图说:“单独的一个CEO的薪水就占据了整个支出的一半。”
CEO目瞪口呆。
“现在,我就要像收入最高的人提出难度最大的问题:请CEO来回答。”
股东们都同意。
“先生,我这里有三个信封。”
“三个!这不公平,其他人都是二选一的!”
“是的,是你告诉我要把测试做得更难一些。并且—”助理狡猾的眨了下眼睛:“你肯定比一般的职员要聪明50%,毕竟你的收入是他们的50倍呢。”
CEO怒目圆瞪,但一句话都说不出来。
“在这三个信封里,一个装有续约合同书,另两个装有解雇通知书。和以前的信封一样,在每个信封上都有一句话。最多一句是真的。”
信封A:这个信封里有解雇通知书
信封B:这个信封里有续约合同书
信封C:信封B中有续约合同书
那么你会选那个信封呢?为什么?
会议结束了,关于公司薪金支出问题得到了很好的解决,股东们都高兴的回家了。
最后的问题:这位CEO选出了正确的信封吗?
(提示:股东们对助理的解决方案十分满意,一是提拔他成为公司的CEO)
***************************************************************
一个罪犯必顺要在十分钟内过一条河到其它边境,不然被抓到就被处死。(他身上只有2毛,而且没有护照)
有三种过渡方试
1 搭船—渡过河刚好要十分钟,船费是2毛。(但罪不知道船上有没有人查护照)
2 过桥—从桥头走到桥尾刚好要十分钟,但要交建桥费5毛,桥尾收费员每隔五分钟睡五分钟(不用查护照)
3 游泳—游到河的另一头刚好要十分钟,不用交钱,别人很难发搅(但水流很急如果游泳有可能被水流冲走)
提示:保命第一,省钱第二,如果你是罪犯你要选那种~
*********************************************************
某著名企业的经典推理题!
一位教授把16张扑克牌放在桌上,如下;
黑桃 :A、7、Q
梅花: 3.4.7.9.J.Q
红心: 2.3.5.Q.K
方块: A.5
教授从中选出一张,把这张牌的数告诉了他的学生"甲”
把花色告诉了"乙”
然后教授问"甲”说"你知道是哪一张牌吗?
"甲”我不能确定是哪张牌
"乙”我知道你会这样说
"甲”现在我知道了
"乙”现在我也知道了
教授高兴的点点头.甲乙二人都是很有强的逻辑推理能力的人,并且都说了实话.
根据以上信息,通过你的推理告诉我这张牌
*********************************************************
1、水平思考法
有一家人决定搬进城里,于是去找房子。
全家三口,夫妻两个和一个5岁的孩子。他们跑了一天,直到傍晚,才好不容易看到一张公寓出租的广告。
他们赶紧跑去,房子出乎意料的好。于是,就前去敲门询问。
这时,温和的房东出来,对这三位客人从上到下地打量了一番。
丈夫豉起勇气问道:"这房屋出租吗?"
房东遗憾地说:"啊,实在对不起,我们公寓不招有孩子的住户。"
丈夫和妻子听了,一时不知如何是好,于是,他们默默地走开 了。
那5岁的孩子,把事情的经过从头至尾都看在眼里。那可爱的心灵在想:真的就没办法了? 他那红叶般的小手,又去敲房东的大门。
这时,丈夫和妻子已走出5米来远,都回头望着。
门开了,房东又出来了。这孩子精神抖擞地说:......
房东听了之后,高声笑了起来,决定把房子租给他们住。
问:这位5岁的小孩子说了什么话,终于说服了房东?
*****************************************************
2、篮球赛
在某次篮球比赛中,A组的甲队与乙队正在进行一场关键性比赛。对甲队来说,需要嬴乙队6分,才能在小组出线。现在离终场只有6秒钟了,但甲队只蠃了2分。要想在6秒钟内再赢乙队4分,显然是不可能的了。
这时,如果你是教练,你肯定不会甘心认输,如果允许你有一次叫停机会,你将给场上的队员出个什么主意,才有可能蠃乙队6分?
*********************************************************
3、分油问题
有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份?
**********************************************************
4、第十三号大街
史密斯住在第十三号大街,这条大街上的房子的编号是从13号 到1300号。琼斯想知道史密斯所住的房子的号码。
琼斯问道:它小于500吗? 史密斯作了答复,但他讲了谎话。
琼斯问道:它是个平方数吗? 史密斯作了答复,但没有说真话。
琼斯问道:它是个立方数吗? 史密斯回答了并讲了真话。
琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。
史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。
但是,琼斯说错了。
史密斯住的房子是几号?
*********************************************************
5.不同部落间的通婚
故事讲的是许多年前欠完美岛上的一件婚事。一个普卡部落人 (总讲真话的)同一个沃汰沃巴部落人(从不讲真话的)结婚。婚后,他们生了一个儿子。这个孩子长大后当然具有西利撤拉部落的性格(真话、假话或假话、真话交替着讲)。
这个婚姻是那么美满,以致夫妻双方在许多年中都受到了对方性格的影响。讲这个故事的时候,普卡部落的人已习惯于每讲三句真话 就讲一句假话,而沃汰沃巴部落的人,则己习惯于每讲三句假话就要 讲一句真话。
这一对家长同他们的儿子每人都有个部落号,号码各不相同。他们的名字分别叫塞西尔、伊夫琳、西德尼 (这些名字在这个岛上男女 通用)。
三个人各说了四句话,但这是不记名的谈话,还有待我们来推断 各组话是由谁讲的 (我们想,前普卡当然是讲一句假话、三句真话,而前沃汰沃巴则是讲一句真话、三句假话)。
他们讲的话如下:
A:(1)塞西尔的号码是三人中最大的。(2)我过去是个普卡。(3)B是我的妻子。(4)我的号码比B的大22。
B:(1)A是我的儿子。(2)我的名字是塞西尔。(3)C的号码是54或78或81。(4)C过去是个沃汰沃巴。
C:(1)伊夫琳的号码比西德尼的大10。(2)A是我的父亲。(3)A的号码是66或68或103。(4)B过去是个普卡。
找出A、B、C三个人中谁是父亲、谁是母亲、谁是儿子,他们各自的名字以及他们的部落号。
************************************************************
6、环球旅行
有人开始环球旅行了。可是,在地球上怎样才算"环球"呢?我很茫然,主要是弄不清 "环球旅行"的定义。后来我就假设:"只要是跨过地球上所有的经度线和纬度线,就可以算环球旅行。"
那么请问,在这样的假设下,环球旅行的最短路程大概是多少公里?不过,解这个题时,为了简化,可以把地球看做是一个正圆球,周长是4万公里。
我的想法:太简单了,也许是我想的太简单了,考虑一下南北极所有经线相交的特殊性,然后顺着南北极随便找一条经线走一圈就OK了,这样就能把所有的纬线跨过,然后在两个极点的时候把所有经线跨过。4万公里就是答案了。
*******************************************************
7、"15点"游戏
乡村庙会开始了。
今年搞了一种叫做 "15点"的游戏。
艺人卡尼先生说:"来吧,老乡们。规则很简单,我们只要把硬 币轮流放在1到9这个数字上,谁先放都一样。你们放镍币,我放银元,谁首先把加起来为15的三个不同数字盖住,那么桌上的钱就全数归他。"
我们先看一下游戏的过程:某妇人先放,她把镍币放在7上,因为将7盖住,他人就不可再放了。其他一些数字也是如此。
卡尼把一块银元放在8上。
妇人第二次把镍币放在2上,这样她以为下一轮再用一枚镍币放在6上就可加为
8,于是她以为就可蠃了。但艺人第二次把银元放 在6上,堵住了夫人的路。现在,他只要在下一轮把银元放在1上就可获胜了。
妇人看到这一威胁,便把镍币放在1上。
卡尼先生下一轮笑嘻嘻地把银元放到了4上。妇人看到他下次放到5上便可蠃了,就不得不再次堵住他的路,她把一枚镍币放在5上。
但是卡尼先生却把银元放在3上,因为8+4+3=15,所以他蠃 了。可怜的妇人输掉了这4枚镍币。
该镇的镇长先生被这种游戏所迷住,他断定是卡尼先生用了一种 秘密的方法,使他比赛时怎么也不会输掉,除非他不想蠃。
镇长彻夜末眠,想研究出这一秘密的方法。
突然他从床上跳了下来,"啊哈!我早知道那人有个秘密方法,我现在晓得他是怎么干的了。真的,顾客是没有办法蠃的。"
这位镇长找到了什么窍门?你或许能发现怎么同朋友们玩这种 "15点"游戏而不会输一盘。
***************************************************************
9、尤克利地区的电话线路
直到去年,尤克利地区才消除了对电话的抵制情绪。虽然现在己 着手在安装电话,但是由于计划不周,进展比较缓慢。
直到今天,该地区的六个小镇之间的电话线路还很不完备。A镇同其他五个小镇之间都有电话线路;而B镇、C镇却只与其他四个小 镇有电话线路;D、E、F三个镇则只同其他三个小镇有电话线路。如果有完备的电话交换系统,上述现象是不难克服的。因为,如果在 A镇装个电话交换系统,A、B、C、D、E、F六个小镇都可以互相通话。但是,电话交换系统要等半年之后才能建成。在此之前,两个小镇之间必须装上直通线路才能互相通话。
现在,我们还知道D镇可以打电话到F镇。
请问:E镇可以打电话给哪三个小镇呢?
***************************************************
10,猜字母
S先生:让我来猜你心中所想的字母,好吗? P先生:怎么猜?
S先生:你先想好一个拼音字母,藏在心里。p先生:嗯,想好了。
S先生:现在我要问你几个问题。P先生:好,请问吧。
S先生:你所想的字母在CARTHORSE这个词中有吗? P先生:有的。
S先生:在SENATORIAL这个词中有吗?P先生:没有。
S先生:在INDETERMINABLES这个词中有吗? P先生:有的。
S先生:在REALISATON这个词中有吗? P先生:有的。
S先生:在ORCHESTRA这个词中有吗? P先生:没有。
S先生:在DISESTABLISHMENTARIANISM中有吗? P先生:有的。
S先生:我知道,你的回答有些是谎话,不过没关系,但你得告诉我,你上面的六个回答,有几个是真实的? P先生:三个。
S先生:行了,我已经知道你心中的字母是……。
*******************************************************
11、琼斯教授的奖章
琼斯教授在W学院开设 "思维学"课程,在每次课程结束时,他总要把一枚奖章奖给最优秀的学生。然而,有一年,珍妮、凯瑟 琳、汤姆三个学生并列地成为最优秀的学生。
琼斯教授打算用一次测验打破这个均势。
有一天,琼斯教授请这三个学生到自己的家里,对他们说:"我准备在你们每个人头上戴一顶红帽子或蓝帽子。在我叫你们把眼晴睁开以前,都不许把眼睛睁开来。" 琼斯教授在他们的头上各戴了一顶红帽子。琼斯说:"现在请你们把眼睛都睁开来,假如看到有人戴的是红帽子就举手,谁第一个推断出自己所戴帽子的颜色,就给谁奖章。" 三个人睁开眼睛后都举了手。一分钟后,珍妮喊道:"琼斯教授,我知道我戴的帽子是红色的。"
珍妮是怎样推论的?
********************************************************
12、猜帽问题
在众多的逻辑名题中,影响最广泛的,恐怕要数"猜帽问题"了。下面,举一个例子来说明这类问题的概貌。
有三顶红帽子和两顶白帽子。将其中的三顶帽子分别戴在 A、B、C三人头上。这三人每人都只能看见其他两人头上的帽子,但看不见自己头上戴的帽子,并且也不知道剩余的两顶帽子的颜色。
问A:"你戴的是什么颜色的帽子?" A回答说:"不知道。" 接着,又以同样的问题问B。B想了想之后,也回答说:"不知道。" 最后问C。C回答说:"我知道我戴的帽子是什么颜色了。" 当然,C是在听了A、B的回答之后而作出回答的。试问:C戴的是什么颜色的帽子?
有人说,这个问题的作者是诺贝尔奖金获得者、英国物理学家狄拉克。的确,狄拉克在他的著作中极力推崇这个问题。然而,实际上,远在狄拉克以前的年代,就有这种类型的问题了。不管这类问题的作者是谁,它都不失为逻辑题中的一个杰作,它将以永恒的魅力世世代代地流传下去。
这类问题,需预先加以规定:出场人物都必须依据正确的逻辑推理。以上题为例,c听了A和B的回答后,知道自己的帽子的颜色,这是以A、B的逻辑推理为前提的。如果A、B胡乱猜测或者智力不足,以致对问题作出了错误的判断,那么,C就不可能作出正确的答案。
***********************************************************
13、大女子主义村
它发生在一个地点不明的愚昧的大女子主义村子里。
在这个村子里,有50 对夫妇,每个女人在别人的丈夫对妻子不忠实时会立即知道,但从来不知道自己的丈夫如何。
该村严格的大女子主义章程要求,如果一个女人能够证明她的丈夫不忠实,她必须在当天杀死他。
假定女人们是赞同这一章程的、聪明的、能意识到别的妇女的聪明、并且很仁慈(即她们从不向那些丈夫不忠实的妇女通风报信)。
假定在这个村子里发生了这样的事:所有这50个男人都不忠实,但没有哪一个女人能够证明她的丈夫的不忠实,以至这个村子能够快活而又小心翼翼地一如既往。
有一天早晨,森林的远处有一位德高望重的女族长来拜访。她的诚实众所周知,她的话就像法律。她暗中警告说村子里至少有一个风流的丈夫。这个事实,根据她们已经知道的,只该有微不足道的后果,但是一旦这个事实成为公共知识,会发生什么?
速求!逻辑推理题20道
某公司的CEO面临着一个当代很普通的问题:裁员。
CEO对助理讲:“我们必须裁剪掉一半的员工,但是我很担心我裁掉的人会是对公司很有用的人才。你知道,这样的事情现在太多了。”
助理说:“没有问题。你不必亲自裁剪任何人。让他们自己解雇自己,那样他们就不会责怪你了。就让我来做吧。”
于是这名助理就逐个把雇员叫到办公室。他说:
“这有两个信封。一个里面装的是解雇通知书,另一个是续约合同书。”
他眨眨眼说:“你要做的是选出正确一个。”
“那我怎么知道哪个是哪个啊?”
“很简单,读一读信封上的字就知道了”
信封A:选我吧!我的里面装着续约合同书
信封B:我里面或者是另外一个信封的里面装着解雇通知书
助理说:“只有一个是正确的。”
假如你是雇员,你会选哪个?
第二天,CEO还是不满意。
“你找的10名员工做你的测试,他们全都选对了。我想你没有能够很好完成这件事。”
助理决定把测试做得更完善。他向雇员说,他有两个信封,两个都可能装着解雇通知书;或者都装有续约合同书;或者一个装有解雇通知书,一个装有续约合同书。他一手拿一个信封。如果左手拿着续约合同书,那上面的提示就是正确的;但如果里面是解雇通知书,那上面的提示就是错误的。右手拿着续约合同书,那上面的提示就是错误的;但如果里面是解雇通知书,那上面的提示就是正确的。
左手信封提示:你选择哪个信封都一样
右手信封提示:另外一个信封装有续约合同书
假如你是雇员,你会选哪个?为什么?
第三天CEO更加生气。
这次你选了20个员工做你的测试,结果都通过了。这对于我做出裁员决定毫无帮助。你必须把测试设计的更难些。”
助理想了一下:“剩下的员工都很聪明,即使他们中有一两个答错了,对于裁剪一半员工也没什么大作用。然而,有一个方法我还没有试过。”
“不管怎么样,赶快试。如果在明天股东大会结束前还没有结果,”CEO带点威胁的眼神说:“那我知道至少有一个人要被解雇。”
第二天会议上,助理起身向大股东介绍情况,并结尾说:
“目前我们的支出仍然是应有支出的两倍。可问题是,所有的员工都非常聪明,都没挑选解雇通知书。然而,各位股东可以看到,”助理指着原图分析图说:“单独的一个CEO的薪水就占据了整个支出的一半。”
CEO目瞪口呆。
“现在,我就要像收入最高的人提出难度最大的问题:请CEO来回答。”
股东们都同意。
“先生,我这里有三个信封。”
“三个!这不公平,其他人都是二选一的!”
“是的,是你告诉我要把测试做得更难一些。并且—”助理狡猾的眨了下眼睛:“你肯定比一般的职员要聪明50%,毕竟你的收入是他们的50倍呢。”
CEO怒目圆瞪,但一句话都说不出来。
“在这三个信封里,一个装有续约合同书,另两个装有解雇通知书。和以前的信封一样,在每个信封上都有一句话。最多一句是真的。”
信封A:这个信封里有解雇通知书
信封B:这个信封里有续约合同书
信封C:信封B中有续约合同书
那么你会选那个信封呢?为什么?
会议结束了,关于公司薪金支出问题得到了很好的解决,股东们都高兴的回家了。
最后的问题:这位CEO选出了正确的信封吗?
(提示:股东们对助理的解决方案十分满意,一是提拔他成为公司的CEO)
***************************************************************
一个罪犯必顺要在十分钟内过一条河到其它边境,不然被抓到就被处死。(他身上只有2毛,而且没有护照)
有三种过渡方试
1 搭船—渡过河刚好要十分钟,船费是2毛。(但罪不知道船上有没有人查护照)
2 过桥—从桥头走到桥尾刚好要十分钟,但要交建桥费5毛,桥尾收费员每隔五分钟睡五分钟(不用查护照)
3 游泳—游到河的另一头刚好要十分钟,不用交钱,别人很难发搅(但水流很急如果游泳有可能被水流冲走)
提示:保命第一,省钱第二,如果你是罪犯你要选那种~
*********************************************************
某著名企业的经典推理题!
一位教授把16张扑克牌放在桌上,如下;
黑桃 :A、7、Q
梅花: 3.4.7.9.J.Q
红心: 2.3.5.Q.K
方块: A.5
教授从中选出一张,把这张牌的数告诉了他的学生"甲”
把花色告诉了"乙”
然后教授问"甲”说"你知道是哪一张牌吗?
"甲”我不能确定是哪张牌
"乙”我知道你会这样说
"甲”现在我知道了
"乙”现在我也知道了
教授高兴的点点头.甲乙二人都是很有强的逻辑推理能力的人,并且都说了实话.
根据以上信息,通过你的推理告诉我这张牌
*********************************************************
1、水平思考法
有一家人决定搬进城里,于是去找房子。
全家三口,夫妻两个和一个5岁的孩子。他们跑了一天,直到傍晚,才好不容易看到一张公寓出租的广告。
他们赶紧跑去,房子出乎意料的好。于是,就前去敲门询问。
这时,温和的房东出来,对这三位客人从上到下地打量了一番。
丈夫豉起勇气问道:"这房屋出租吗?"
房东遗憾地说:"啊,实在对不起,我们公寓不招有孩子的住户。"
丈夫和妻子听了,一时不知如何是好,于是,他们默默地走开 了。
那5岁的孩子,把事情的经过从头至尾都看在眼里。那可爱的心灵在想:真的就没办法了? 他那红叶般的小手,又去敲房东的大门。
这时,丈夫和妻子已走出5米来远,都回头望着。
门开了,房东又出来了。这孩子精神抖擞地说:......
房东听了之后,高声笑了起来,决定把房子租给他们住。
问:这位5岁的小孩子说了什么话,终于说服了房东?
*****************************************************
2、篮球赛
在某次篮球比赛中,A组的甲队与乙队正在进行一场关键性比赛。对甲队来说,需要嬴乙队6分,才能在小组出线。现在离终场只有6秒钟了,但甲队只蠃了2分。要想在6秒钟内再赢乙队4分,显然是不可能的了。
这时,如果你是教练,你肯定不会甘心认输,如果允许你有一次叫停机会,你将给场上的队员出个什么主意,才有可能蠃乙队6分?
*********************************************************
3、分油问题
有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份?
**********************************************************
4、第十三号大街
史密斯住在第十三号大街,这条大街上的房子的编号是从13号 到1300号。琼斯想知道史密斯所住的房子的号码。
琼斯问道:它小于500吗? 史密斯作了答复,但他讲了谎话。
琼斯问道:它是个平方数吗? 史密斯作了答复,但没有说真话。
琼斯问道:它是个立方数吗? 史密斯回答了并讲了真话。
琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。
史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。
但是,琼斯说错了。
史密斯住的房子是几号?
*********************************************************
5.不同部落间的通婚
故事讲的是许多年前欠完美岛上的一件婚事。一个普卡部落人 (总讲真话的)同一个沃汰沃巴部落人(从不讲真话的)结婚。婚后,他们生了一个儿子。这个孩子长大后当然具有西利撤拉部落的性格(真话、假话或假话、真话交替着讲)。
这个婚姻是那么美满,以致夫妻双方在许多年中都受到了对方性格的影响。讲这个故事的时候,普卡部落的人已习惯于每讲三句真话 就讲一句假话,而沃汰沃巴部落的人,则己习惯于每讲三句假话就要 讲一句真话。
这一对家长同他们的儿子每人都有个部落号,号码各不相同。他们的名字分别叫塞西尔、伊夫琳、西德尼 (这些名字在这个岛上男女 通用)。
三个人各说了四句话,但这是不记名的谈话,还有待我们来推断 各组话是由谁讲的 (我们想,前普卡当然是讲一句假话、三句真话,而前沃汰沃巴则是讲一句真话、三句假话)。
他们讲的话如下:
A:(1)塞西尔的号码是三人中最大的。(2)我过去是个普卡。(3)B是我的妻子。(4)我的号码比B的大22。
B:(1)A是我的儿子。(2)我的名字是塞西尔。(3)C的号码是54或78或81。(4)C过去是个沃汰沃巴。
C:(1)伊夫琳的号码比西德尼的大10。(2)A是我的父亲。(3)A的号码是66或68或103。(4)B过去是个普卡。
找出A、B、C三个人中谁是父亲、谁是母亲、谁是儿子,他们各自的名字以及他们的部落号。
************************************************************
6、环球旅行
有人开始环球旅行了。可是,在地球上怎样才算"环球"呢?我很茫然,主要是弄不清 "环球旅行"的定义。后来我就假设:"只要是跨过地球上所有的经度线和纬度线,就可以算环球旅行。"
那么请问,在这样的假设下,环球旅行的最短路程大概是多少公里?不过,解这个题时,为了简化,可以把地球看做是一个正圆球,周长是4万公里。
我的想法:太简单了,也许是我想的太简单了,考虑一下南北极所有经线相交的特殊性,然后顺着南北极随便找一条经线走一圈就OK了,这样就能把所有的纬线跨过,然后在两个极点的时候把所有经线跨过。4万公里就是答案了。
*******************************************************
7、"15点"游戏
乡村庙会开始了。
今年搞了一种叫做 "15点"的游戏。
艺人卡尼先生说:"来吧,老乡们。规则很简单,我们只要把硬 币轮流放在1到9这个数字上,谁先放都一样。你们放镍币,我放银元,谁首先把加起来为15的三个不同数字盖住,那么桌上的钱就全数归他。"
我们先看一下游戏的过程:某妇人先放,她把镍币放在7上,因为将7盖住,他人就不可再放了。其他一些数字也是如此。
卡尼把一块银元放在8上。
妇人第二次把镍币放在2上,这样她以为下一轮再用一枚镍币放在6上就可加为
8,于是她以为就可蠃了。但艺人第二次把银元放 在6上,堵住了夫人的路。现在,他只要在下一轮把银元放在1上就可获胜了。
妇人看到这一威胁,便把镍币放在1上。
卡尼先生下一轮笑嘻嘻地把银元放到了4上。妇人看到他下次放到5上便可蠃了,就不得不再次堵住他的路,她把一枚镍币放在5上。
但是卡尼先生却把银元放在3上,因为8+4+3=15,所以他蠃 了。可怜的妇人输掉了这4枚镍币。
该镇的镇长先生被这种游戏所迷住,他断定是卡尼先生用了一种 秘密的方法,使他比赛时怎么也不会输掉,除非他不想蠃。
镇长彻夜末眠,想研究出这一秘密的方法。
突然他从床上跳了下来,"啊哈!我早知道那人有个秘密方法,我现在晓得他是怎么干的了。真的,顾客是没有办法蠃的。"
这位镇长找到了什么窍门?你或许能发现怎么同朋友们玩这种 "15点"游戏而不会输一盘。
***************************************************************
9、尤克利地区的电话线路
直到去年,尤克利地区才消除了对电话的抵制情绪。虽然现在己 着手在安装电话,但是由于计划不周,进展比较缓慢。
直到今天,该地区的六个小镇之间的电话线路还很不完备。A镇同其他五个小镇之间都有电话线路;而B镇、C镇却只与其他四个小 镇有电话线路;D、E、F三个镇则只同其他三个小镇有电话线路。如果有完备的电话交换系统,上述现象是不难克服的。因为,如果在 A镇装个电话交换系统,A、B、C、D、E、F六个小镇都可以互相通话。但是,电话交换系统要等半年之后才能建成。在此之前,两个小镇之间必须装上直通线路才能互相通话。
现在,我们还知道D镇可以打电话到F镇。
请问:E镇可以打电话给哪三个小镇呢?
***************************************************
10,猜字母
S先生:让我来猜你心中所想的字母,好吗? P先生:怎么猜?
S先生:你先想好一个拼音字母,藏在心里。p先生:嗯,想好了。
S先生:现在我要问你几个问题。P先生:好,请问吧。
S先生:你所想的字母在CARTHORSE这个词中有吗? P先生:有的。
S先生:在SENATORIAL这个词中有吗?P先生:没有。
S先生:在INDETERMINABLES这个词中有吗? P先生:有的。
S先生:在REALISATON这个词中有吗? P先生:有的。
S先生:在ORCHESTRA这个词中有吗? P先生:没有。
S先生:在DISESTABLISHMENTARIANISM中有吗? P先生:有的。
S先生:我知道,你的回答有些是谎话,不过没关系,但你得告诉我,你上面的六个回答,有几个是真实的? P先生:三个。
S先生:行了,我已经知道你心中的字母是……。
*******************************************************
11、琼斯教授的奖章
琼斯教授在W学院开设 "思维学"课程,在每次课程结束时,他总要把一枚奖章奖给最优秀的学生。然而,有一年,珍妮、凯瑟 琳、汤姆三个学生并列地成为最优秀的学生。
琼斯教授打算用一次测验打破这个均势。
有一天,琼斯教授请这三个学生到自己的家里,对他们说:"我准备在你们每个人头上戴一顶红帽子或蓝帽子。在我叫你们把眼晴睁开以前,都不许把眼睛睁开来。" 琼斯教授在他们的头上各戴了一顶红帽子。琼斯说:"现在请你们把眼睛都睁开来,假如看到有人戴的是红帽子就举手,谁第一个推断出自己所戴帽子的颜色,就给谁奖章。" 三个人睁开眼睛后都举了手。一分钟后,珍妮喊道:"琼斯教授,我知道我戴的帽子是红色的。"
珍妮是怎样推论的?
********************************************************
12、猜帽问题
在众多的逻辑名题中,影响最广泛的,恐怕要数"猜帽问题"了。下面,举一个例子来说明这类问题的概貌。
有三顶红帽子和两顶白帽子。将其中的三顶帽子分别戴在 A、B、C三人头上。这三人每人都只能看见其他两人头上的帽子,但看不见自己头上戴的帽子,并且也不知道剩余的两顶帽子的颜色。
问A:"你戴的是什么颜色的帽子?" A回答说:"不知道。" 接着,又以同样的问题问B。B想了想之后,也回答说:"不知道。" 最后问C。C回答说:"我知道我戴的帽子是什么颜色了。" 当然,C是在听了A、B的回答之后而作出回答的。试问:C戴的是什么颜色的帽子?
有人说,这个问题的作者是诺贝尔奖金获得者、英国物理学家狄拉克。的确,狄拉克在他的著作中极力推崇这个问题。然而,实际上,远在狄拉克以前的年代,就有这种类型的问题了。不管这类问题的作者是谁,它都不失为逻辑题中的一个杰作,它将以永恒的魅力世世代代地流传下去。
这类问题,需预先加以规定:出场人物都必须依据正确的逻辑推理。以上题为例,c听了A和B的回答后,知道自己的帽子的颜色,这是以A、B的逻辑推理为前提的。如果A、B胡乱猜测或者智力不足,以致对问题作出了错误的判断,那么,C就不可能作出正确的答案。
***********************************************************
13、大女子主义村
它发生在一个地点不明的愚昧的大女子主义村子里。
在这个村子里,有50 对夫妇,每个女人在别人的丈夫对妻子不忠实时会立即知道,但从来不知道自己的丈夫如何。
该村严格的大女子主义章程要求,如果一个女人能够证明她的丈夫不忠实,她必须在当天杀死他。
假定女人们是赞同这一章程的、聪明的、能意识到别的妇女的聪明、并且很仁慈(即她们从不向那些丈夫不忠实的妇女通风报信)。
假定在这个村子里发生了这样的事:所有这50个男人都不忠实,但没有哪一个女人能够证明她的丈夫的不忠实,以至这个村子能够快活而又小心翼翼地一如既往。
有一天早晨,森林的远处有一位德高望重的女族长来拜访。她的诚实众所周知,她的话就像法律。她暗中警告说村子里至少有一个风流的丈夫。这个事实,根据她们已经知道的,只该有微不足道的后果,但是一旦这个事实成为公共知识,会发生什么?
超级测试--测试你的逻辑思维能力
9月1号 理由: 1)首先分析这10组日期,经观察不难发现,只有6月7日和12月2日这两组日期的 日数是唯一的。由此可知,如果小强得知的N是7或者2,那么他必定知道了老师的 生日。 2)再分析“小明说:如果我不知道的话,小强肯定也不知道”,而该10组日期的 月数分别为3,6,9,12,而且都相应月的日期都有两组以上,所以小明得知M后 是不可能知道老师生日的。 3)进一步分析“小明说:如果我不知道的话,小强肯定也不知道”,结合第2步 结论,可知小强得知N后也绝不可能知道。 4)结合第3和第1步,可以推断:所有6月和12月的日期都不是老师的生日,因为 如果小明得知的M是6,而若小强的N==7,则小强就知道了老师的生日。(由第 1步已经推出),同理,如果小明的M==12,若小强的N==2,则小强同样可以知道老师的生日。即:M不等于6和9。现在只剩下“3月4日 3月5日 3月8日 9月1日 9月5日”五组日期。而小强知道了,所以N不等于5(有3月5日和9月5日),此时, 小强的N∈(1,4,8)注:此时N虽然有三种可能,但对于小强只要知道其中的 一种,就得出结论。所以有“小强说:本来我也不知道,但是现在我知道了”, 对于我们则还需要继续推理 至此,剩下的可能是“3月4日 3月8日 9月1日” 5)分析“小明说:哦,那我也知道了”,说明M==9,N==1,(N==5已经被排除,3月份的有两组)