2×2四格表与配对四格表,天煞孤星的生辰八字

2×2四格表资料进行率的比较的时候都有哪些检验方法?各自的条件是什么...

医学论文中常用统计分析方法的合理选择
目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 1.t 检验
t检验是英国统计学家W.S.Gosset 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。
常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析
方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。
常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:
随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。
目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。
3.卡方检验(χ2检验)
χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。
常用的χ2
检验分为如下几类:①2×2表χ2
检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2
值进行连续性校正。因为T值太小,会导致χ2
值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2
值也有偏差,需要用2×2表χ2
检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2
值进行校正。③R×C表χ2
检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。
2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<0.05,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。
此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。
其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ
因此,对于适用参数检验的资料,最好还是用参数检验。
秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验
(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。
公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。
4. 非参数检验
非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。

统计学配对四格表和普通四格表的区别

一、适用条件不同

1、普通四格表是根据不同的实验条件分类,得到不同的实验结果的资料。如:按照是否吸烟分组,得到是否患癌症的人数。

2、配对四格表是先将实验对象配对后随机安排到两个不同处理组,所得的二分类结果的资料。例如,同一批对象两个时间点(或两个部位)的测定,或同一对象用两种方法(或两种仪器、两名化验员、两种条件)的测定,所得的二分类(如阳性、阴性)结果的资料。

二、表格形式不同

1、普通四格表为独立二分样本表格形式,横标题和纵标题为不一致的分类,如:横标题为是否吸烟,纵标题为是否患肺癌。

2、配对四格表为相关样本表格形式,横标题和纵标题为相关或相同的分类,如:阳性和阴性。

三、卡方检验方法不同

1、普通四格表可以采用卡方检验,先计算边际概率,再给出理论数,最后按照下列公式进行计算。

2、配对四格表的卡方检验公式如下。

四、应用的检验不同

1、普通四格表应用独立二分样本检验。

2、配对四格表应用相关样本检验。

参考资料:

百度百科——四格表

比较四格表资料、配对四格表资料的卡方检验在设计方法、资料整理、假...

授课章节
第七章 卡方检验
授课对象
预防医学本科
授课时数
6学时
授课时间
第四学年下学期
授课地点
新教学楼406室
教学目的与要求
掌握:成组设计四格表资料检验的计算及应用条件和校正检验的计算及应用条件;配对设计四格表资料检验。
熟悉:行×列表资料的检验及其注意事项。
了解:四格表的确切概率计算;频数分布的拟合优度检验的概念。
教学重点与难点
重点:成组设计四格表资料检验;配对设计四格表资料检验;
行×列表资料的检验及其注意事项。
难点:卡方检验的基本思想
教学方法

组织安排
教学方法:课堂讲授为主,课堂提问、练习、实习为辅。
时间安排:教师讲授本次课内容185分钟,课堂提问、练习10分钟;小结5分钟,实验课100分钟。
教学方法
讲授、CAI课件、举例
教具
多媒体
教学提纲、课堂小结与
课后练习
一、教学提纲一、通过第一节介绍卡方检验的基本思想
二、重点介绍第二节―完全随机设计下两组频数分布的卡方检验
1、概念:四格表(fourfold
table)、实际数(
actual
frequency)、理论数
(theoretical
frequency)
、格子数、自由度、卡方分布
2、完全随机设计下两组频数分布的卡方检验的基本思想
3、四格表资料卡方检验
⑴ 成组设计:两行两列,解决成组设计两个样本率或构成比的比较
⑵ 四格表资料卡方检验步骤
⑶ 四格表资料卡方检验的条件
三、配对四格表资料卡方检验
1、配对设计、两行两列、解决配对设计两个样本率的比较
2、配对四格表资料卡方检验步骤
3、配对四格表资料卡方检验的条件
四、行×列表的卡方检验
行×列表成组设计,解决成组设计多个样本率(构成比)的比较
行×列表的卡方检验的步骤
3、行×列表的卡方检验的注意事项
五、四格表的确切概率法
应用情况
基本思想
假设检验基本步骤
二、课堂小结1.
卡方检验的用途:
拟和优度检验
成组设计两个率或多个率的比较
成组设计两个构成比或多个构成比的比较
配对设计两个率比较
注意各种情况的卡方检验的适用条件:四格表资料卡方检验的条件;配对四格表资料卡方检验的条件;行×列表的卡方检验适用条件。
四格表确切概率法是四格表卡方检验的补充,是直接计算概率的方法。
三、课后练习简述卡方检验的用途。
比较两个独立样本频数分布的卡方检验,和比较配对样本两个频数分布的卡方检验在设计方法、资料整理、假设检验等方面的差别是什么?
举例说明如果实验效应用等级资料表示,比较两总体效应间差别是否有统计学意义为什么不能用卡方检验?
4.为什么有些四格表(或R×C表)必须要计算确切概率?

什么情况用配对四格表

用配对四格表的情况:

配对四格表为相关样本表格形式,横标题和纵标题为相关或相同的分类。

普通四格表为独立二分样本表格形式,横标题和纵标题为不一致的分类。

配对四格表是先将实验对象配对后随机安排到两个不同处理组,所得的二分类结果的资料。

普通四格表是根据不同的实验条件分类,得到不同的实版验结果的资料。

总结:独立四格表资料检验

四格表资料的卡方检验用于进行两个率或两个构成比的比较。

专用公式:若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)。

自由度v=(行数-1)(列数-1)=1。

网上算命可靠吗?你相信吗?

六道仙人,因为班只是六道的后辈,而且斑想用来统治人类的忍术还是六道创的

拜求大师看我的紫微盘,我的丈夫会不会出轨?

。。。。。信这啊。晕。。对老公好点就好了啊,这个怎么说的准啊。好吧。。我路过的。。只是觉得百度越来越神了。。。

展开全文
返回顶部
Baidu