抽签先抽和后抽的几率是一样的吗,抽签抽到中签什么意思

抽签时,先抽和后抽的中签机会均等吗?

均等,不管谁先抽都是公平的。

我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?

我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。

抽签的先后顺序与结果无关

使用类似的办法可以证明,此后每一个人中签的机会都是m/n。

其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。

抽签时先抽和后抽的中签机会均等吗

 我们今天来讨论一个数学问题,抽签的先后是否会影响你抽签的结果呢?

生活中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,比如把3张电影票分给5个人,由于不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?答案是:均等,不管谁先抽都是公平的。

我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?

我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。

抽签的先后顺序与结果无关

使用类似的办法可以证明,此后每一个人中签的机会都是m/n。

其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。

抽签时,先抽和后抽的中签机会均等吗?

均等,不管谁先抽都是公平的。

我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?

我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。

抽签的先后顺序与结果无关

使用类似的办法可以证明,此后每一个人中签的机会都是m/n。

其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。

抽签时,先抽和后抽的人概率一样吗

是的,我来计算一下,比如4个签一个中奖
首先第一人,四分之一没话说
第二个人,(1-0.25)*(三分之一)
很明显,继续算第三个人的也是一样的,都是四分之一

抽签先抽和后抽概率一样么?为什么

抽签先抽和后抽概率是一样的. 因为每一只签被抽到的可能性没有变化,
与先抽和后抽的顺序无关,所以抽签先抽和后抽概率是一样的.

抽签时先抽和后抽中签的几率是相等的还是不等的?

相等。均等,不管谁先抽都是公平的。

索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。

从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;

而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。

抽签的先后顺序与结果无关

使用类似的办法可以证明,此后每一个人中签的机会都是m/n。

其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。

展开全文
返回顶部
Baidu