抽签第一个抽和最后一个抽,抽签抽到好字怎么样

抽签时先抽和后抽中签的几率是相等的还是不等的?

相等。均等,不管谁先抽都是公平的。

索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。

从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;

而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。

抽签的先后顺序与结果无关

使用类似的办法可以证明,此后每一个人中签的机会都是m/n。

其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。

按顺序进行抽奖,先抽和后抽的中奖概率一样吗?

均等,不管谁先抽都是公平的。

用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。

而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。

抽签的先后顺序与结果无关

使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。

在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。抽签选择是一种较公平的选择方法,在不公布结果的情况下,抽签先后顺序是不会影响中奖概率的。

抽签时先抽和后抽中签的几率是

抽签时先抽和后抽中签的几率是均等的。不管怎么抽签,最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,所以中签的可能性必然是相等的。
抽签时中签的几率相同吗
抽签时中签的几率均等,不管谁先抽都是公平的。我们索性用一个一般情况来证明,假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关,不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
展开全部内容
-->

抽签时,先抽和后抽的人概率一样吗

是的,我来计算一下,比如4个签一个中奖
首先第一人,四分之一没话说
第二个人,(1-0.25)*(三分之一)
很明显,继续算第三个人的也是一样的,都是四分之一

...就把几个选项写出来,然后抽签,三次抽到同样

你们有没有做过应该实验,就是自己有时候不知道怎么选择时,就把几个选项写出来,然后抽签,三次抽到同样这个概率(五分之一)有没有天意的成分在。
纯概率问题,没有什么天意的成分,巧合而已,但是有你心理作用的成分在里边。就要看你是唯物主义者还是唯心主义了。比如有两个选择,你不知道选择哪一个,就想用抛硬币来决定,但是你抛出是正面了,知道结果了,但是你还想再抛一次,这时候你就真正知道自己的选择了。

概率问题 三人抽签 先后顺序和概率

每个人得到票的概率相同,与顺序无关第一个人中的概率3/20 第二个人:在第一个人中的情况下中的概率为3/20×2/19=3/190 在第一个人不中的情况下中的概率为17/20×3/19=51/380 所以中的概率是3/190+51/380=57/380=3/20 以此类推

展开全文
返回顶部
Baidu