抽签时先抽和后抽几率是一样的吗,如何安慰双子座男生
按顺序进行抽奖,先抽和后抽的中奖概率一样吗?
均等,不管谁先抽都是公平的。
用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。
而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。抽签选择是一种较公平的选择方法,在不公布结果的情况下,抽签先后顺序是不会影响中奖概率的。
先抽和后抽的概率一样吗?请分情况讨论
这是一个教科书范例级的古典概率论问题了。答案是:取决于先抽的人抽中签之后是不是马上打开看。如果先抽的人抽签之后并不马上打开看,而是等所有人都抽完之后再打开,那么先抽和后抽的人抽中某个签的概率是一样的。反之,如果先抽的人抽签之后马上打开看,那么后抽的人抽中某个签的概率就变了,因为这个时候,后抽的人抽中某签的概率成了在给定“先抽的人抽过签”这个条件之后的“条件概率”。当然,不需要计算,凭直观也能知道,如果先抽的人没有抽中某签,那后抽的人抽中该签的条件概率就提高了;如果先抽的人已经抽中了该签,后抽的人抽中该签的条件概率就是0了。
希望采纳
抽签时先抽和后抽中签的几率是
抽签时先抽和后抽中签的几率是均等的。不管怎么抽签,最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,所以中签的可能性必然是相等的。
抽签时中签的几率相同吗
抽签时中签的几率均等,不管谁先抽都是公平的。我们索性用一个一般情况来证明,假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关,不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
展开全部内容
-->
抽签时,先抽和后抽的中签机会均等吗?
均等,不管谁先抽都是公平的。
我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。
其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
中签是什么意思?
举例说明:假如有100个人打算买同一个股票,但是这个股票只发行10股,那么就有90个人买不到,为了公平,大家抽签,抽到的就是中签了
股票里的“中签”是啥意思?谢谢!
是相对申购新股而言的,申购新股的人很多,而股票不多。
假如发行的股票只有1000万股,而申购的资金可以买1亿股,那只能通过抽签来决定,中签率大概是10%,被抽中的人就是“中签”了